Using OneNote for Open University TMAs

Image from windowscentral.com.

I get a lot of attention when using my surface for note taking at work, studying on the tube or train and during OU tutorials, making full use of multiple notebooks, tabs and pages in OneNote.  I’ve written before about using the surface but following a discussion after my most recent tutorial I realised I hadn’t covered the way I use it along side the OU’s electronic TMA submission process1.  A lot of people on the same maths course as I am tend to use \LaTeX and typeset their marked assignments.  While I am a great fan of \LaTeX and appreciate how clear this is for the tutors to mark, I have always preferred to hand write assignments.  While there is some aspect of writing by hand helping to cement ideas more than those typewritten, the main reason I prefer to handwrite is that the exam is handwritten.  If I don’t force myself into regular, neat mathematical writing then it’s easy to make mistakes in the time pressure of the exam.  Simple things like forgetting to underline vector or matrix definitions can cost marks and if the examiner can’t distinguish a 0 from a 6 then you’re going to be in trouble! Continue reading Using OneNote for Open University TMAs

3D Printer Part 22: Hood frame and lifting mechanism

At the end of my last post in this series, we had added the rear hood.  This post focuses on the hood frame and lifting mechanism, covering issues 85-90 of 3D Create and Print by Eaglemoss Technology.  If you’ve skipped a part of this series you can start from the beginning, including details of the Vector 3 printer I’m building on my 3D printer page.   You will also need the parts from issue 78 that you should have kept safe… Continue reading 3D Printer Part 22: Hood frame and lifting mechanism

3D Printer Part 21: Rear hood and maintenance

V3 with front and rear hood fitted
V3 with front and rear hood fitted

At the end of my last post in this series, we had added the top cover, filament guide and hood.  This post focuses on the rear cover and some additional maintenance, covering issues 82-84 of 3D Create and Print by Eaglemoss Technology.  If you’ve skipped a part of this series you can start from the beginning, including details of the Vector 3 printer I’m building on my 3D printer page

It’s been a while since my last post where I was hoping that I would have a post on my first print.  However, after reflashing the firmware as advised, I’ve struggled to get the laptop speaking to the printer.  There are things to be done that I’m working through and as soon as I have a solution I will post it up.  If you’ve got to this point and your printer is not working, please do not panic, I’ll put up diagnostic steps and solutions as soon as I have them. Continue reading 3D Printer Part 21: Rear hood and maintenance

How to build a human – review

Gemma Chan, a real human and also now a real synth
Gemma Chan, a real human and also now a real synth

Ahead of season 2 of Channel 4’s Humans, they screened a special showing how a synthetic human could be produced.  If you missed the show and are in the UK, you can watch again on 4OD.

Presented by Humans actress Gemma Chan, the show combined realistic prosthetic generation with AI to create a synth, but also dug a little deeper into the technology, showing how pervasive AI is in the western world.

There was a great scene with Prof Noel Sharkey and the self driving car where they attempted a bend, but human instinct took over: “It nearly took us off the road!” “Shit, yes!”.  This reinforced the delegation of what could be life or death decisions – how can a car have moralistic decisions, or should they even be allowed to? Continue reading How to build a human – review

ReWork Deep Learning London 2016 Day 1 Morning

Entering the conference (c) ReWork
Entering the conference (c) ReWork

In September 2016, the ReWork team organised another deep learning conference in London.  This is the third of their conferences I have attended and each time they continue to be a fantastic cross section of academia, enterprise research and start-ups.  As usual, I took a large amount of notes on both days and I’ll be putting these up as separate posts, this one covers the morning of day 1.  For reference, the notes from previous events can be found here: Boston 2015, Boston 2016.

Day one began with a brief introduction from Neil Lawrence, who has just moved from the University of Sheffield to Amazon research in Cambridge.  Rather strangely, his introduction finished with him introducing himself, which we all found funny.  His talk was titled the “Data Delusion” and started with a brief history of how digital data has exploded.  By 2002, SVM papers dominated NIPs, but there wasn’t the level of data to make these systems work.  There was a great analogy with the steam engine, originally invented by Thomas Newcomen in 1712 for pumping out tin mines, but it was hugely inefficient due to the amount of coal required.  James Watt took the design and improved on it by adding the condenser, which (in combination with efficient coal distribution) led to the industrial revolution1.   Machine learning now needs its “condenser” moment.

Continue reading ReWork Deep Learning London 2016 Day 1 Morning

Amazon Echo Dot (second generation): Review

Echo Dot (c) Amazon
Echo Dot (c) Amazon

When I attended the ReWork Deep Learning conference in Boston in May 2016, one of the most interesting talks was about the Echo and the Alexa personal assistant from Amazon.  As someone whose day job is AI, it seemed only right that I surround myself by as much as possible from other companies.  This week, after it being on back order for a while, it finally arrived.  At £50, the Echo Dot is a reasonable price, with the only negative I was aware of before ordering being that the sound quality “wasn’t great” from a reviewer. Continue reading Amazon Echo Dot (second generation): Review

Formula AI – driverless racing

The AI racing car (c) Roborace
The AI racing car (c) Roborace

We’re all starting to get a bit blasé about self driving cars now.  They were a novelty when they first came out, but even if the vast majority of us have never seen one, let alone been in one, we know they’re there and they work1 and that they are getting better with each iteration (which is phenomenally fast).  But after watching the formula 1 racing, it’s a big step from a 30mph trundle around a city to over 200mph racing around a track with other cars.  Or is it? Continue reading Formula AI – driverless racing

MST210 Study focus and time management

Not an exciting image - just the view sat on the floor of a train
Sometimes, you just have to sit on the floor to get stuff done…

If you’ve been reading my blog for a while you’ll know that I start off with good intentions for my OU modules and then finding myself rushing TMAs, skipping a lot of the text and generally revising the day before the exam. While I’ve got away with this so far, it is getting harder to get the scores I want and I knew going into MST210 that my focus and time management would need to improve to take this seriously.

One of the things I took into account when doing this module was the amount of time I spend commuting. Working in London I have a train journey of between 30 mins and 1 hour 15 (depending on whether I travel in rush hour or not) and a tube journey of 27 minutes (fortunately on a single line) in each direction, so at a minimum I have 2 hours on public transport in four good half hour blocks. That’s 10 hours study time a week, which should be sufficient1.

I’m getting a head start on MST210 as with previous modules I’ve fallen behind due to work commitments and I don’t want to impact my family time playing catch up as I did last year. I’ve done one full week and completed book A unit 1. This is on par with the pace that the study calendar sets2 and I have made notes on all the examples and done every single exercise in the unit.

Keeping focus has been really hard. It’s really easy when you’re on a train at 6.30am to sip coffee and stare out of the window as you wake up gradually. It’s so easy when you get on a train or tube and have to stand to just leave my surface and book in my rucksac and play Peak on my phone. It takes no effort after a day at work to grab a gin and tonic and read my Kindle. What is hard is having that focus and discipline to make every minute count – every minute I spend geting ahead now is a minute I can spend having fun with my family rather than having to isolate myself to rush that TMA. It seems like a no-brainer, but humans do tend to make short-term decisions at the expense of long-term success . One of the best things we can do to overcome how our brains work is have a routine and stick to it3.

This is what I’ve been doing – every morning and evening, I’ve forced myself to get my MST210 books out, not only when I’m actually on the train/tube, but also while waiting for them – I keep them in my hands while changing trains; if I don’t put them away, then there isn’t the effort to get them out again. If I need to sit on the floor of a train so I can write, then that’s what I do. This focus has taken a lot of effort and I’m not sure how long it will be before it’s automatic, nor indeed what will happen when my routine changes due to business travel.

However, backed by the science that our brains are dumb enough to make bad short term decisions even if we are aware of the long term consequences, I know that the focus I need is entirely in my own control and if I stick to the routine long enough, it will become the go-to task for my selfish limbic system.

MST210 – mathematical modelling – registered

MST210 - mathematical modelling is fun )
MST210 – mathematical modelling is fun )

Today, after a lot of pondering I finally signed up for MST210 to start in October.  This is the second 60 point module and, just like M208, is mandatory on the BSc Maths pathway.  I’d been holding back for a number of reasons and reviewing my post from last year, I realised that nothing had changed.  If anything my job is now more mathematically demanding as I dig deeper into the bleeding edge internals of machine learning.  My 3D printer is nearly finished and my daily commute is now 3 hours a day, giving me 2 hours a day sitting on trains.  That time is currently occupied with getting through a ridiculous amount of books1.  What I really want to avoid with MST210 is some of the rushing that I did for M208 – I want to enjoy this module. Continue reading MST210 – mathematical modelling – registered

Literate programming – effect on performance

Example from the MNIST data set used in this experiment
Example from the MNIST data set used in this experiment

After my introductory post on Literate Programming, it occurred to me that while the concept of being able to create documentation that includes variables from the code being run is amazing, this will obviously have some impact on performance.  At best, this would be the resource required to compile the \LaTeX document as if it was static, while the “at worst” scenario is conceptually unbounded.  Somewhere along the way, pweave is adding extra code to pass the variables back and forth between the python and the \LaTeX, how and when it does this could have implications that you wouldn’t see in a simple example but could be catastrophic when running the kind of neural nets that my department are putting together. So, being a scientist, I decided to run a few experiments….1 Continue reading Literate programming – effect on performance