This is a summary of day 2 of ReWork Deep Learning summit 2016 that took place in Boston, May 12-13th. If you want to read the summary of day 1 then you can read my notes here. Continue reading Rework DL Boston 2016 – Day 2
Tag: Boston
ReWork DL Boston 2016 – Day 1
Last year, I blogged about the rework Deep Learning conference in Boston and, being here for the second year in a row, I thought I’d do the same. Here’s the summary of day 1.
The day started with a great intro from Jana Eggers with a positive message about nurturing this AI baby that is being created rather than the doomsday scenario that is regularly spouted. We are a collaborative discipline of academia and industry and we can focus on how we use this for good. Continue reading ReWork DL Boston 2016 – Day 1
ReWork DL Boston 2015 – Day 2
This post is a very high level summary of Day 2 at the Boston ReWork Deep Learning Summit 2015. Day 1 can be found here.
The first session kicked off with Kevin O’Brian from GreatHorn. There are 3 major problems facing the infosec community at the moment:
- Modern infrastructure is far more complex than it used to be – we are using AWS, Azure as extensions of our physical networks and spaces such as GitHub as code repositories and Docker for automation. It is very difficult for any IT professional to keep up with all of the potential vulnerabilities and ensure that everything is secure.
- (Security) Technical debt – there is too much to monitor/fix even if business released the time and funds to address it.
- Shortfall in skilled people – there is a 1.5 million shortage in infosec people – this isn’t going to be resolved quickly.
ReWork DL Boston 2015 – Day 1
So, day one of the ReWork Deep Learning Summit Boston 2015 is over. A lot of interesting talks and demonstrations all round. All talks were recorded so I will update this post as they become available with the links to wherever the recordings are posted – I know I’ll be rewatching them.
Following a brief introduction the day kicked off with a presentation from Christian Szegedy of Google looking at the deep learning they had set up to analyse YouTube videos. They’d taken the traditional networks used in Google and made them smaller, discovering that an architecture with several layers of small networks was more computationally efficient that larger ones, with a 5 level (inception-5) most efficient. Several papers were referenced, which I’ll need to look up later, but the results looked interesting.
New Horizons
So, most people know by now that in a week’s time I start a new role. After 12 years of working for established business both small and large I am joining a start up in an area at the current edge of what is possible in computer science. I’m very much looking forward to having my technical and scientific abilities stretched as far as they’ll go and, not unsurprisingly, the immersion in a new venture where the focus is on the solution and not why things can’t be done (often the case in established companies).
I have a reading list as long as the references for my own thesis to get through in the next few weeks so I can become an expert in my new field: deep learning and artificial intelligence. One of the first things I’ll be doing is attending the ReWorkDL summit in Boston, MA, which is just a fascinating line up of some of the leading people in this space. All being well I will be presenting at the 2016 summit.
I’ll be tweeting throughout the event with thoughts and comments and will do a summary post afterwards.